The GMW Protocol

CS 598 DH

Today’s objectives
Review oblivious transfer
Introduce XOR secret sharing

Build our first protocol for securely computing
any program (with semi-honest security)

Oblivious
Sender Transfer

15, il
-

HOW TO PLAY ANY MENTAL GAME

ar

A Completeness Theorem for Protocols with Honest Majority

(Extended Abstract)

Qded Goldreich

Dept. of Computer Ze.
Technion
Haifa, Israel

MIT

Abstract

We present a polynomisl-time algorithm that,
given a8 a input the description of a game with
incomplete information and any number of players,
produces a protocol for plaving the game that leaks
no partial information, provided the majprity of the
players is honest.

Cur algorithm automatically solves all the
mult-party protocoli problems addressed in
complexity-based cryptography duting the last 10
years. It acwally is a completencse thearem for the
class of distributed prowcols with honest majority.
Such completeness theorem is optamal in the sense
that, if the majprity of the players is not honest,
some protocol probiems have no efficient solution(Z],

1. Introduction

Before discussing haw to "make playahle® a
general game with incomplete infermadon (which
we do in section B8) let us address the problem of
making playable a special class of games, the Tunng
machine games | Tm-gomee for short).

Informally, n parues, respectively and indivis
dually owaing secret lnputs zy,...,7,, would like to

Work partiaily supported by NSF grants D CR.35606905 acd
DCR-84L3577, an [(BM post-decioral feilowship and an
IBM faculty development award, The work was done when
the first author was ot the Laboratory for Computar Sci-
ence at MIT, and %he second author at the machemalical
Sciences Researeh [nstitute st UC-Berkeley,

Permission to copy withoul fee all or part of this material is granted
provided that the copics are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
s by permission of the Association lfor Computing Machinery. To
copy otherwise, or © republish, requires a fee and/or specfic
mermission

© 1987 ACM 0-89791-221-7/87/0006-0218 75¢

Silvio Micali
Lab. for Computer Sc.

Cambridge, MA 02139

218

Avt Wigderson

Inst. of Math. and CS
Hebrew University
Jerusalem, Israel

correctly run a given Turing machine M on these
r;,’s while keeping the maximum possible privacy
about them. That 18, they want to compute
y=M(z,,...,2,) without revealing more about the
x;'s than it is already contained in the value y itself.
For instance, if M computes the sum of the z,s,
every single player should noc be able to learn more
than the sum of the inputs of the other parties,
Here M may very well be a probsbilistic Turing
machine. In this case, all players want w agree on a
single string y, selected with the right probability
distmbution, as M’s output.

The correctness and privacy constraint of a
Tm-game can be esasily met with the help of an
extra, trusted party P. Each player i simply gives
his secret input z; to P. P will privately run the
prescrided Turing machine, A, on thest inputs and
publically announce M’s outpur. Making 2 Tm-
game playable essentially means that the correctness
and privacy constraints can be satisfied by the =
players themselves, without invoking any extra
party. Proving that Tm-games are playable retains
moat of the flavor and difficulties of our general
theorem.

2. Preliminary Definitions

2.1 Notation and Conventions for Proba-
bilistic Algorithms.

We emphasize the number of inputs received
by an algorithm as follows. If algorithm A receives
only one input we write "A(')", if it receives two
inputs we write A(-,') and so on.

RV will atand for "random variable”; in this
paper we only consider RVs that assume values in

—
. fx,) ! X, y)

Trusted
\dea‘ W°r‘ Third Party

GMW Protocol

Real World

—
. fx,) ! X, y)

Trusted
\dea\ W‘“‘ Third Party

GMW Protocol
Hint: Lots of OT

Real World

A Boolean Circuit is a directed acyclic graph where
® Fach node has fan-in two.

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

Output
C

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

E OUtpUt

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

E OUtpUt

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

E OUtpUt

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

E OUtpUt

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

Output

A Boolean Circuit /s a directed acyclic graph where
® Fach node has fan-in two (and unbounded fan-out).

® Fach node has a label A\ or &
® [here are two distinguished wires labelled 0 and 1

Output

The size of C, written | C

, IS the number of gates

The size of C, written | C

, IS the number of gates

The depth of C is the length of the longest path
from input to output

The size of C, written | C

The depth of C is the length of the longest path
from input to output

, IS the number of gates

The multiplicative depth of C is the length of the
longest path from input to output, counting only A

Output
0

Q
@ - I'
1
@

Fact: { A, D ,1} is a complete Boolean basis.

21

Fact: { A, @D ,1} is a complete Boolean basis.

For any Boolean function f : {0,1}" — {0,1}", there exists a
Boolean circuit over { A, @ ,1} that computes {.

|.e., Boolean circuits can compute any bounded function

22

Step 1 of GMW:
Express function f as a Boolean circuit C

Step 1 of GMW:
Express function f as a Boolean circuit C

There Is a lot more

to say about this!

24

Q.) S H Q>

Q.) S H Q>

Q.) S H Q>

(a @)b d)
@

XOR Secret Shares

¢

The XOR secret sharing of a bit x is a pair of
bits (x,y, x;) where P, holds xy and P, holds

X1, and where x, @ x; = x

32

XOR Secret Shares ﬂ
-

P Q

The XOR secret sharing of a bit x is a pair of
bits (x,y, x;) where P, holds xy and P, holds

X1, and where x, @ x; = x

We sometimes denote such a pair by | x]

33

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of
bits (x,y, x;) where P, holds xy and P, holds

X1, and where x, @ x; = x

We sometimes denote such a pair by | x]

Intuition: P’s share x;, acts as a mask, hiding
x from P, (and vice versa)

34

|

-

Q

Q.) S H Q>

(a @)b d)
@

la]
1]

[c]
[d]

[(a ® c)(b D d)]
®

0~ =0

Each party in its head maintains a local copy
of the circuit, placing its shares on the wires

37

la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

p

How do we “decrypt” output shares”?

38

[(a ® c)(b D d)]
®

Y

-

X

Where do input shares come from?

Goal: put [x] on the input wire

¢

39

Where do input shares come from?

Goal: put [x] on the input wire

¢

r < {0,1)

40

Where do input shares come from?

Goal: put [x] on the input wire

¢

r < {0,1)

41

Where do input shares come from?

Goal: put [x] on the input wire

How do we XOR two shares?
Goal: given gate input wires holding [x], [y], 4

put [x @ y] on the gate output ’ Q

X adl

43

How do we XOR two shares?
Goal: given gate input wires holding [x], [y], 4

put [x @ y] on the gate output ’ Q

X adl
Xo D Yo X DY
Yo Y1

44

How do we XOR two shares? Q
Goal: given gate input wires holding [x], [y], 4

put [x @ y] on the gate output ’ Q

X
- Xo D Y yl X, Dy
20 XOR is “free” .

45

How do we “decrypt” output shares?

Goal: given wire holding [x],
reveal x to each party

¢

46

How do we “decrypt” output shares”? ﬂ
Goal: given wire holding [x], 4

P Q

reveal x to each party

47

la]
1]

[c]
[d]

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?

p

How do we “decrypt” output shares”?

48

[(a ® c)(b D d)]
®

-

X

How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ .

49

How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ Q

(Xo © x1) A (Vo D yy1)

50

How do we AND two shares?
Goal: given gate input wires holding [x], [y], 4

put [x A y] on the gate output ’ Q

(Xo @ x1) A (Vo D yy1)
= (Xg A Vo) D (Xg Ay D (x; Ayy) D (x; Ayy)

51

How do we AND two shares? @
Goal: given gate input wires holding [x], [y], 4

|

X

put [x A y] on the gate output

(Xo @ x1) A (Vo D yy1)
= (Xg A Vo) D (Xg Ay D (x; Ayy) D (x; Ayy)

X \ “Free”) X,

52

How do we AND two shares? M
Goal: given gate input wires holding [x], | v], ,_

e

put [x A y] on the gate output

(Xo @ x1) A (Vo D yy1)
= (Xg A Yo) © (g Ayy) © (x; AYyp) © (X Ayy)

NP

53

random secret share |x A V| s.t. neither party
learns X A y

Important Subgoal
Goal: given gate input bits x, y, compute ‘

54

‘ |
\ y
\ y
\\ r"’

\ /

% 7

Q 4

S 5

A 5

% >

X

Important Subgoal

Goal: given gate input bits x, y, compute ’ .

random secret share |x A V| s.t. neither party
learns X A y

0.x y

ﬁ —

—
0 ty=0
x ity=1

OT

55

-~

Y

= XAY

|
\ y
\ y
A /
\ /

\\\ -

< 4

\ v

-

& 5>

X

N o
Good enough??

Important Subgoal

Goal: given gate input bits x, y, compute ’ .
random secret share [x A y] s.t.

learns X A y

0.x

{

-~

neither party

—
ﬁ

Y
Y
0 ty=0
v ify=1)"""Y

Important Subgoal

‘ |
\ y
\
\ y
\ y

A 4

N >

"

\\ ~

Y o

& e

X

learns X A y

0.x

N o
Good enough??

No! Recelver learns {
iInformation about x

Goal: given gate input bits x, y, compute ’ .
random secret share [x A y] s.t.

-~

neither party

Y
Y

—
ﬁ

0 ty=0
x ity=1

random secret share |x A V| s.t. neither party
learns X A y

X

Important Subgoal
Goal: given gate input bits x, y, compute ‘

r < {0,1)

58

Important Subgoal @

Goal: given gate input bits x, y, compute ’ .
random secret share |x A V| s.t. neither party

learns X A y y

Y

—

59

Important Subgoal @

Goal: given gate input bits x, y, compute ’ .
random secret share |x A V| s.t. neither party

learns X A y y

]N_{O’I}I”FEBX y

Y O
s

rd (xAy)

60

Important Subgoal

Goal: given gate input bits x, y, compute
random secret share |x A V| s.t. neither party
learns X A y

]N_{O’I}I”FEBX y

—

-~

|
Y

How do we AND two shares?

Goal: given gate input wires holding [x], | v],
put [x A y] on the gate output

62

-~

P Q

s & 0.1

How do we AND two shares? @
Goal: given gate input wires holding [x], | v],

put [x A y] on the gate output ’ .
s & 0.1
ﬁ r P (xO A yl)

(rd (s D x; Ayy) D (g Ay, s @ (rd xy Ay @ (x; Ayy))
=[x Ayl

63

GMW Protocol

GMW Protocol

Propagate secret shares from input
wires to output wires

65

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

66

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:

67

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:
O(|C|) OTs

68

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:
O(|C|)OTs

Number of protocol rounds scales with multiplicative depth of C

69

Where do we go from here?

o

More Parties

Stronger Security Notions

Decrease Cost
Fewer rounds, fewer cryptographic operations, etc.

70

Today’s objectives
Review oblivious transfer
Introduce XOR secret sharing

Build our first protocol for securely computing
any program (with semi-honest security)

