The GMW Protocol

CS 598 DH

Today's objectives

Review oblivious transfer

Introduce XOR secret sharing
Build our first protocol for securely computing any program (with semi-honest security)

m_{0}, m_{1}
 $b \in\{0,1\}$

Sender

Receiver

HOW TO PLAY ANY MENTAL GAME

A Completeness Theorem for Protocols with Honest Majority

> (Extended Abstract)

Oded Goldr
Dept. of Computer Sc. Lab. for Co Technion MTM Haifa, Isresel Cambridge,
Abs tract We present a polynomial-time algorithm that, given as a input the description of a game with incomplete information and any number of players, produces a protocol for playing the game that leaks no partial information, provided the majority of the players is honest
Our algorithm astomatically solves all the mult-party protocol problems addressed in complexiry-based erypography during the last 10 yessa. It acwully is a completenese thearem for the clase of distributed proweols with honest majority. Such completeness theorem is optimal in the sense that, if the majority of the players io not honest, some protocol probiems have no efficient solution[]].
1. Introduction Before discussing how to "make playahle" a general same with incemplete information (wbich we do in section 8) let us address the problem of making playable a special class of games, the Turing mechine games (7 m-gamee for short).
Informally, n parries, respectively and individually owaing secret inputs z_{1}, \ldots, x_{1}, would like to
BM faculty derelopmeat awrd, The work wu doot
Permission to copy withoul fee all or part of this material is granted provided that the copies are not made or distribused for direct commercial advantage, the ACM coopyright noxice and the tile of the publication and ist date appear, and notioe is isiven that copying is by permission of the Association for Computing Macchinery. To copy oither

orrectly run a given Turing machins M on these xi's while keeping the maximum possible privacy $\Rightarrow h\left(x_{1}, \ldots, z_{n}\right)$ without revealing more about the x_{i} 's than it is already contained in the value y itself For instance, if M computes the sum of the $x_{i}{ }^{\prime}$ s, every single player should not be able to learn more than the sum of the inputs of the other parties,
Herc M may very well be A probabilistic Turing Here M may very well be a probabilistic Turing single string y, selected with the right probability distribution, as M 's output. Tm-gane can be essily met with the help of an extra, trusted party P. Each player i simply gives
his secret input z_{i} to $P . P$ will privately run the prescribed Turing machine, M, on these inputes and publieally announce M 's output Making a Tm bame playable essen tially means that the correctnesi and privacy constraints can be saxisfifd by the π party. Proving that Tw-ganes are playabie retains
moot of the favor and difificultees of our general theorem.
2. Preliminary Definitions
2.1 Notation and Conventions for Probabilistic Algorithms.

We emphasize the number of inputs received by an algorithm as follows. In algoribm A reeeives only one input we write $A(\cdot)$ hputs we write $A(\because)$ and so on.
$R V$ will stand for "random variable"; in this
Rer we only consider $R V_{s}$ that ssume values in 218

GMW Protocol

Real World

$\xrightarrow[\stackrel{y(x, y)}{x}]{\stackrel{y}{\longrightarrow}}$
 x
 Ideal World

 Third Party

GMW Protocol
 Hint: Lots of OT

Real World

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two.
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

A Boolean Circuit is a directed acyclic graph where

- Each node has fan-in two (and unbounded fan-out).
- Each node has a label \wedge or \oplus
- There are two distinguished wires labelled 0 and 1

The size of C, written $|C|$, is the number of gates

The size of C, written $|C|$, is the number of gates
The depth of C is the length of the longest path from input to output

The size of C, written $|C|$, is the number of gates
The depth of C is the length of the longest path from input to output
The multiplicative depth of C is the length of the longest path from input to output, counting only \wedge

Fact: $\{\wedge, \oplus, 1\}$ is a complete Boolean basis.

Fact: $\{\wedge, \oplus, 1\}$ is a complete Boolean basis.

For any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, there exists a Boolean circuit over $\{\wedge, \oplus, 1\}$ that computes f.

I.e., Boolean circuits can compute any bounded function

Step 1 of GMW:
 Express function f as a Boolean circuit C

Step 1 of GMW:

Express function f as a Boolean circuit C

a, b

a, b

a, b

a, b

a, b

a, b

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\left\langle x_{0}, x_{1}\right\rangle$ where P_{0} holds x_{0} and P_{1} holds
x_{1}, and where $x_{0} \oplus x_{1}=x$

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\left\langle x_{0}, x_{1}\right\rangle$ where P_{0} holds x_{0} and P_{1} holds x_{1}, and where $x_{0} \oplus x_{1}=x$

We sometimes denote such a pair by $[x]$

XOR Secret Shares

The XOR secret sharing of a bit x is a pair of bits $\left\langle x_{0}, x_{1}\right\rangle$ where P_{0} holds x_{0} and P_{1} holds x_{1}, and where $x_{0} \oplus x_{1}=x$

We sometimes denote such a pair by $[x]$
Intuition: P_{0} 's share x_{0} acts as a mask, hiding x from P_{1} (and vice versa)

y

Each party in its head maintains a local copy of the circuit, placing its shares on the wires

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares? How do we "decrypt" output shares?
x

Where do input shares come from?

Goal: put $[x]$ on the input wire

x

Where do input shares come from?

Goal: put $[x]$ on the input wire

$r \stackrel{\$}{\leftarrow}\{0,1\}$

Where do input shares come from?

Goal: put $[x]$ on the input wire

$r \stackrel{\$}{\leftarrow}\{0,1\}$

$$
x \bigoplus r
$$

Where do input shares come from?

Goal: put $[x]$ on the input wire

$r \stackrel{\$}{\leftarrow}\{0,1\}$

$$
x \bigoplus r
$$

How do we XOR two shares?

Goal: given gate input wires holding $[x],[y]$,

 put $[x \oplus y]$ on the gate output

How do we XOR two shares?

Goal: given gate input wires holding $[x],[y]$,

 put $[x \oplus y]$ on the gate output

How do we XOR two shares?

Goal: given gate input wires holding $[x],[y]$,

 put $[x \oplus y]$ on the gate output

How do we "decrypt" output shares?

Goal: given wire holding $[x]$, reveal x to each party

How do we "decrypt" output shares?

Goal: given wire holding $[x]$, reveal x to each party

Where do input shares come from?
How do we XOR two shares?
How do we AND two shares?
How do we "decrypt" output shares?

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right)
$$

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
\begin{gathered}
\left(x_{0} \oplus x_{1}\right) \wedge\left(y_{0} \oplus y_{1}\right) \\
=\left(x_{0} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{0}\right) \oplus\left(x_{1} \wedge y_{1}\right)
\end{gathered}
$$

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party learns $x \wedge y$

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party
learns $x \wedge y$
$0, x$

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

Good enough?

$$
\left(\left\{\begin{array}{ll}
0 & \text { if } y=0 \\
x & \text { if } y=1
\end{array}\right)=x \wedge y\right.
$$

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party learns $x \wedge y$

Good enough?

No! Receiver learns information about x

$$
\left(\left\{\begin{array}{ll}
0 & \text { if } y=0 \\
x & \text { if } y=1
\end{array}\right)=x \wedge y\right.
$$

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party
$r \stackrel{\$}{\leftarrow}\{0,1\}$

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

Important Subgoal

Goal: given gate input bits x, y, compute random secret share $[x \wedge y]$ s.t. neither party

$\langle r, r \oplus(x \wedge y)\rangle=[x \wedge y]$
$r \oplus(x \wedge y)$

How do we AND two shares?
Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
r \stackrel{\$}{\leftarrow}\{0,1\} \quad s \stackrel{\$}{\leftarrow}\{0,1\}
$$

How do we AND two shares?

Goal: given gate input wires holding $[x],[y]$, put $[x \wedge y]$ on the gate output

$$
r \stackrel{\$}{\leftarrow}\{0,1\} \quad s \stackrel{\$}{\leftarrow}\{0,1\}
$$

$$
\begin{gathered}
\left\langle r \oplus\left(s \oplus x_{1} \wedge y_{0}\right) \oplus\left(x_{0} \wedge y_{0}\right), s \oplus\left(r \oplus x_{0} \wedge y_{1}\right) \oplus\left(x_{1} \wedge y_{1}\right)\right\rangle \\
=[x \wedge y]
\end{gathered}
$$

GMW Protocol

GMW Protocol

Propagate secret shares from input wires to output wires

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates

Cost:

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates

Cost:
$O(|C|)$ OTs

GMW Protocol

Propagate secret shares from input wires to output wires

Use OT to implement AND gates
Cost:
$O(|C|)$ OTs
Number of protocol rounds scales with multiplicative depth of C

Where do we go from here?

More Parties

Stronger Security Notions

Decrease Cost
Fewer rounds, fewer cryptographic operations, etc.

Today's objectives

Review oblivious transfer

Introduce XOR secret sharing
Build our first protocol for securely computing any program (with semi-honest security)

