
The GMW Protocol
CS 598 DH

Today’s objectives

Review oblivious transfer

Introduce XOR secret sharing

Build our first protocol for securely computing
any program (with semi-honest security)

2

x y

f(x, y) f(x, y)

f

3

Sender Receiver

1-out-of-2
Oblivious
Transfer

m0, m1 b ∈ {0,1}

mb⊥

4

5

x y

x y

f(x, y) f(x, y)
Trusted

Third PartyIdeal World

Real World

GMW Protocol

6

x y

x y

f(x, y) f(x, y)
Trusted

Third PartyIdeal World

Real World

GMW Protocol
Hint: Lots of OT

7

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two.
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

8

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕

9

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input

10

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

11

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate12

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

13

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

14

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

15

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

16

A Boolean Circuit is a directed acyclic graph where
• Each node has fan-in two (and unbounded fan-out).
• Each node has a label or
• There are two distinguished wires labelled 0 and 1

∧ ⊕

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

0

17

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

0

The size of , written , is the number of gatesC |C |

18

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

0

The size of , written , is the number of gatesC |C |
The depth of is the length of the longest path

from input to output
C

19

⊕

⊕
∧

⊕Input
Output

Gate

0

1

1

1

0

0

0

The size of , written , is the number of gatesC |C |
The depth of is the length of the longest path

from input to output
C

The multiplicative depth of is the length of the
longest path from input to output, counting only

C
∧

20

21

Fact: is a complete Boolean basis.{ ∧ , ⊕ ,1}

22

Fact: is a complete Boolean basis.{ ∧ , ⊕ ,1}

For any Boolean function , there exists a
Boolean circuit over that computes .

f : {0,1}n → {0,1}m

{ ∧ , ⊕ ,1} f

I.e., Boolean circuits can compute any bounded function

23

Step 1 of GMW:

Express function as a Boolean circuit f C

24

Step 1 of GMW:

Express function as a Boolean circuit f C

There is a lot more
to say about this!

25

⊕

⊕
∧

a, b c, d

26

⊕

⊕
∧

a, b c, d

27

⊕

⊕
∧

a, b c, d

28

⊕

⊕
∧

̂a

b̂

̂c

̂d

a, b c, d

29

⊕

⊕
∧

̂a

b̂

̂c

̂d

̂a ⊕ c

a, b c, d

30

⊕

⊕
∧

̂a

b̂

̂c

̂d

̂a ⊕ c

̂b ⊕ d

a, b c, d

31

⊕

⊕
∧

̂a ⊕ c

̂b ⊕ d

̂(a ⊕ c)(b ⊕ d)

̂a

b̂

̂c

̂d

a, b c, d

32

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

33

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

We sometimes denote such a pair by [x]

34

XOR Secret Shares

The XOR secret sharing of a bit is a pair of
bits where holds and holds

, and where

x
⟨x0, x1⟩ P0 x0 P1

x1 x0 ⊕ x1 = x

Intuition: ’s share acts as a mask, hiding
 from (and vice versa)

P0 x0
x P1

We sometimes denote such a pair by [x]

35

⊕

⊕
∧

x y

̂a ⊕ c

̂b ⊕ d

̂(a ⊕ c)(b ⊕ d)

̂a

b̂

̂c

̂d

36

⊕

⊕
∧

x y

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

37

x y

Each party in its head maintains a local copy
of the circuit, placing its shares on the wires

38

⊕

⊕
∧

x y

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

39

x

Where do input shares come from?
Goal: put on the input wire[x]

40

x

Where do input shares come from?

r $← {0,1}

Goal: put on the input wire[x]

41

x

Where do input shares come from?

r $← {0,1}

Goal: put on the input wire[x]

x ⊕ r

42

x

Where do input shares come from?

r $← {0,1}

Goal: put on the input wire[x]

x ⊕ r

x ⊕ rr

43

⊕
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1

44

⊕
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1
x0 ⊕ y0 x1 ⊕ y1

45

⊕
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ⊕ y]

How do we XOR two shares?

⊕
x1

y1
x0 ⊕ y0 x1 ⊕ y1

XOR is “free”

46

Goal: given wire holding ,
reveal to each party

[x]
x

How do we “decrypt” output shares?

x0 x1

47

Goal: given wire holding ,
reveal to each party

[x]
x

How do we “decrypt” output shares?

x0 x1

x0
x1

48

⊕

⊕
∧

Where do input shares come from?

How do we XOR two shares?

How do we AND two shares?

How do we “decrypt” output shares?

[a]

[c]

[b]

[d]

[a ⊕ c]

[b ⊕ d]

[(a ⊕ c)(b ⊕ d)]

49

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

50

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)

51

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

52

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

“Free”

53

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

(x0 ⊕ x1) ∧ (y0 ⊕ y1)
= (x0 ∧ y0) ⊕ (x0 ∧ y1) ⊕ (x1 ∧ y0) ⊕ (x1 ∧ y1)

OT

54

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

55

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
0,x y

({0 if y = 0
x if y = 1) = x ∧ y

56

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
0,x y

({0 if y = 0
x if y = 1) = x ∧ y

Good enough?

57

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
0,x y

({0 if y = 0
x if y = 1) = x ∧ y

Good enough?

No! Receiver learns
information about x

58

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

r $← {0,1}

59

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

60

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

r ⊕ (x ∧ y)

61

Goal: given gate input bits , compute
random secret share s.t. neither party

learns

x, y
[x ∧ y]

x ∧ y

Important Subgoal

x y

OT
r, r ⊕ x yr $← {0,1}

r ⊕ (x ∧ y)⟨r, r ⊕ (x ∧ y)⟩ = [x ∧ y]

62

∧
x0

y0

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

∧
x1

y1

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

63

Goal: given gate input wires holding ,
put on the gate output

[x], [y]
[x ∧ y]

How do we AND two shares?

r $← {0,1} s $← {0,1}

OT
r, r ⊕ x0 y1

r ⊕ (x0 ∧ y1)

OT
y0

s ⊕ (x1 ∧ y0)

s, s ⊕ x1

⟨r ⊕ (s ⊕ x1 ∧ y0) ⊕ (x0 ∧ y0), s ⊕ (r ⊕ x0 ∧ y1) ⊕ (x1 ∧ y1)⟩

= [x ∧ y]

64

GMW Protocol

65

GMW Protocol

Propagate secret shares from input
wires to output wires

66

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

67

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:

68

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:

 OTsO(|C |)

69

GMW Protocol

Propagate secret shares from input
wires to output wires

Use OT to implement AND gates

Cost:

 OTs

 Number of protocol rounds scales with multiplicative depth of
O(|C |)

C

70

Where do we go from here?

More Parties

Stronger Security Notions

Decrease Cost

 Fewer rounds, fewer cryptographic operations, etc.

Today’s objectives

Review oblivious transfer

Introduce XOR secret sharing

Build our first protocol for securely computing
any program (with semi-honest security)

71

